Tidal Conversion by Supercritical Topography
نویسندگان
چکیده
Calculations are presented of the rate of energy conversion of the barotropic tide into internal gravity waves above topography on the ocean floor. The ocean is treated as infinitely deep, and the topography consists of periodic obstructions; a Green function method is used to construct the scattered wavefield. The calculations extend the previous results of Balmforth et al. for subcritical topography (wherein waves propagate along rays whose slopes exceed that of the topography everywhere), by allowing the obstacles to be arbitrarily steep or supercritical (so waves propagate at shallower angles than the topographic slopes and are scattered both up and down). A complicated pattern is found for the dependence of energy conversion on e, the ratio of maximum topographic slope to wave slope, and the ratio of obstacle amplitude and separation. This results from a sequence of constructive and destructive interferences between scattered waves that has implications for computing tidal conversion rates for the global ocean.
منابع مشابه
Tidal conversion and turbulence at a model ridge: direct and large eddy simulations
Direct and large eddy simulations are performed to study the internal waves generated by the oscillation of a barotropic tide over a model ridge of triangular shape. The objective is to go beyond linear theory and assess the role of nonlinear interactions including turbulence in situations with low tidal excursion number. The criticality parameter, defined as the ratio of the topographic slope ...
متن کاملTidal Conversion at a Submarine Ridge
The radiative flux of internal wave energy (the “tidal conversion”) powered by the oscillating flow of a uniformly stratified fluid over a two-dimensional submarine ridge is computed using an integral-equation method. The problem is characterized by two nondimensional parameters, A and B. The first parameter, A, is the ridge half-width scaled by h, where h is the uniform depth of the ocean far ...
متن کاملNumerical and Analytical Estimates of M2 Tidal Conversion at Steep Oceanic Ridges
Numerical calculations of the rate at which energy is converted from the external to internal tides at steep oceanic ridges are compared with estimates from analytic theories. The numerical calculations are performed using a hydrostatic primitive equation ocean model that uses a generalized s-coordinate system as the vertical coordinate. The model [Regional Ocean Modeling System (ROMS)] estimat...
متن کاملTidal energy conversion in a global hot spot: On the 3-D dynamics of baroclinic tides at the Celtic Sea shelf break
Globally, the Celtic Sea shelf break is ranked highest as an energetic ‘‘hot spot’’ of tidal energy conversion, therefore making it the most significant contributor to global internal tidal energy flux. In this paper, the three-dimensional dynamics of baroclinic tides in the shelf-slope area of the Celtic Sea was investigated numerically and using observational data collected on the 376th cruis...
متن کاملInternal wave generation by oscillation of a sphere, with application to internal tides
A joint theoretical and experimental study is performed on the generation of internal gravity waves by an oscillating sphere, as a paradigm of the generation of internal tides by barotropic tidal flow over three-dimensional supercritical topography. The theory is linear and three-dimensional, applies both near and far from the sphere, and takes into account viscosity and the unsteadiness arisin...
متن کامل